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1 1-D “Shallow-water” equations for flow-slides 

1.1 General formulation 

 

Figure 1-1: Debris element on a curved track. a) Local coordinate system. b) Flow 
variables, velocity and height. c) tractions on element  

The last two phases of the evolution of a catastrophic landslide are its flow- and 

deposition. Here we consider slides that are “long” in the direction normal to the main 

flow plane. The corresponding mathematical theory is an 1-D, “shallow-water” 

approximation of flow-slide motion on a track with variable topography (Savage & 

Hutter [7], Figure 1-1 (a)). The position of any point P  of the track is given by the 

arc-length coordinate s . The track is approximated locally by its circle of curvature 

( )K r . Thus, at any point ( )P s  of the track we introduce the local coordinate system 

( , )t nP e eG G  with ortho-normal base vectors, tangential and normal to the track at this 

point. At any time t  at a point ( )P s  we define the flow-height as a function of 

position and time (Eulerian description), 

 ( , )h h s t=  (1.1) 
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The width of this section length perpendicular to the considered plane is computed 

from the total “wet” surface area of the normal section at the considered position  

 Ab
h

=  (1.2) 

Accordingly the cross-sectional flow velocity is defined as, 

 ( , )qv v s t
A

= =  (1.3) 

where q  is the total volumetric flow across the considered normal section. 

The flow velocity is taken tangential and is assumed to be a function of position and 

time only,  

 tv ve=
G G  (1.4) 

The acceleration has however a tangential and a normal component, 

 t t n na a e a e= +
G G G  (1.5) 

where, 

 ta v= �  (1.6) 

is the “material” time derivative of the velocity (see Appendix II, Sect. 5), 

 v vv v
t s
∂ ∂

= +
∂ ∂

�  (1.7) 

and  

 
2

n
va
r

=  (1.8) 

is the centripetal acceleration. 

Mass balance for the considered flow element (Figure 1-1 (b)) yields, 

 ( ) 0h hv
t s

∂ ∂
+ =

∂ ∂
 (1.9) 

Momentum balance in normal directions reads, 
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2
: cosn t

vds g hds hd hds
r

σ ρ β σ θ ρ− − =/  

or 

 ( )2cosn t
hg h v
r

σ ρ β σ ρ= + +  (1.10) 

In eq. (1.10) with β  we denote the local inclination angle of the track with respect to 

the horizontal direction (Figure 1-1 (a)).  

We assume that the lateral pressure is proportional to the basal normal reaction,  

 t nKσ σ=  (1.11) 

Let ϕ′  be the internal friction coefficient of the material. The lateral pressure 

coefficient usually is taken as 

 
1 :

: 0
: 0

a

p

if
K K if and active plastic flow

K if and pasive plastic flow

β ϕ
β ϕ
β ϕ

⎧ ′≥
⎪ ′= ≤ ≤⎨
⎪ ′≤ ≤⎩

 (1.12) 

where /a pK is the active/passive earth-pressure coefficient of limit analysis (see 

Appendix II, Sect. 6)  

 
2

/ 2 2
cos 12 1 1 1
cos cos

a pK ϕ

β ϕ

⎛ ⎞′⎜ ⎟= − −
⎜ ⎟ ′⎝ ⎠
∓  (1.13) 

Notice that for, 

 , 0 1β ϕ δ δ′= − ≤ <<  (1.14) 

 ( )
2

1/ 2
/ 2

1 sin
cos

p aK Oϕ δ
ϕ

′+
= ±

′
 (1.15) 

And if ϕ  is small, then from eq. (1.15) we get, 

 ( )2 4
/

11
2p aK Oϕ ϕ′ ′= + +  (1.16) 
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With this result we have a justification of the usually met assumption that 1K = , for 

β ϕ′≥ , cf. eq. (1.12). This assumption could be replaced by the following (cf. 

eq.(1.15)), 

 

( )2 21 sin / cos :

: 0
: 0

a

p

if

K K if and active plastic flow
K if and pasive plastic flow

ϕ ϕ β ϕ

β ϕ
β ϕ

⎧ ′ ′ ′+ ≥
⎪
⎪ ′= ≤ ≤⎨
⎪ ′≤ ≤⎪⎩

 (1.17) 

This means that always holds 

 (1)K O=  (1.18) 

From eqs. (1.10) and (1.11) we get, 

 21 cosn K gh vh h
r r

σ ρ β ρ⎛ ⎞− = +⎜ ⎟
⎝ ⎠

 (1.19) 

Let the normalized flow-height be, 

 hh
r

∗ =  (1.20) 

Notice that r →∞  (planar track) the normalized flow-height 0h∗ → . In general we 

will assume that the normalized flow-height is small if compared the radius of 

curvature of the track, and 

 0 1h∗≤ <<  (1.21) 

In this case from eqs. (1.18) to (1.21) we get, 

2
2( )n

vh g K g hh O h
r

σ ρ ρ ∗ ∗⎛ ⎞
′ ′= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

or 

 
2

n
vh g
r

σ ρ
⎛ ⎞

′≈ +⎜ ⎟⎜ ⎟
⎝ ⎠

 (1.22) 

where 
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 cosg g β′ =  (1.23) 

In eq. (1.22) we recognize the first term as the static basal reaction and the second 

term as the dynamic (centripetal) basal reaction.  

Balance of linear momentum in tangential direction yields, 

 ( ): sint nh gh hv
s

σ ρ β τ ρ∂
− + − =
∂

�2  (1.24) 

In most cases we will assume that the shear reaction is purely frictional and that the 

basal (Coulomb) friction is equal to internal friction, 

 tann nτ σ ϕ=  (1.25) 

With these assumptions from eqs. (1.22) to (1.25) we get, 

2 2
21 1 11 tan tan 1v v v vv Kg h g

t s h s g r g r
β ϕ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ′ ′⎜ ⎟ ⎜ ⎟+ + + = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (1.26) 

Eqs. (1.9) and (1.26) constitute the set of governing partial differential equations of  

flow-slides in an 1D-setting and variable topography. They are usually termed as 

“shallow-water” equations or “depth-integrated” equations. They constitute a system 

of quasi-linear hyperbolic p.d. eqs. The solutions of these equations include the 

formation of sharp discontinuities (“shocks”; see Sect. 3), thus such a system of 

hyperbolic equations is treated numerically by the so-called “shock capturing” 

techniques. In that respect we refer here to a remark made by Gray et al. [4]; see 

references therein and Tai et al. [9]): “ …The development of these methods has a 

long history starting with the classic papers of Godunov (1959), Van Leer (1979), 

Harten (1983) and Yee (1987), and there are now a wide range of textbooks on the 

subject (e.g. Le Veque 1990; Godlewski & Raviart 1996; Kröner 1997; Toro 1997). 

Here we have opted to use the recent high-resolution shock-capturing non-oscillatory 

central (NOC) scheme first introduced by Nessyahu & Tadmor (1990) and extended 

to multi-dimensions by Arminjon & Viallon (1995, 1999); Jiang & Tadmor (1998) 

and Lie & Noelle (2003)…”. Recently Professor M. Pastor and his team have 

developed a 2D-model for the analysis of the propagation of fast landslides, using a 

Finite Element Method and the Navier–Stokes depth-integrated equations. 
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1.2 The circular track 

 

Figure 1-2: Circular track 

As an application of the set of governing eqs. (1.9) and (1.26) we consider the case of 

a circular track. Notably that in Geotechnics one usually approximates the “failure 

surface” with a section of a circular cylinder, ; c.f. ( )K R [11]. In this particular case, 

as shown in Figure 1-2, we have that 

 . ,r R const ds Rdθ= = =  (1.27) 

and  

 3
2
πβ θ= −  (1.28) 

Eq. (1.23) reads, 

 sing g θ′ = −  (1.29) 

and with that the momentum balance eq. (1.26) becomes, 

( )

2
2

2

1sin

sin cot tan tan

v v v g vKh
t R hR g R

vg
R

θ
θ θ

θ θ ϕ ϕ

⎛ ⎞⎛ ⎞∂ ∂ ∂ ⎜ ⎟+ + − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

= − − −

 (1.30) 

We introduce the following set of non-dimensional independent and dependent 

variables, 
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*

*

,

,

tt
R
g

v hv h
RgR

θ θ∗

∗

= =

= =

 (1.31) 

In terms of dimensionless variables the governing mass- and momentum balance eqs. 

(1.9) and (1.30) become,  

 ( ) 0h hv
t θ

∂ ∂
+ =

∂ ∂
 (1.32) 

 
( )( )

( )

2 2

2

1 sin

sin cot tan tan

v vv Kh v
t h

v

θ
θ θ
θ θ ϕ ϕ

∂ ∂ ∂
+ + − +

∂ ∂ ∂

= − − −
 (1.33) 

where for simplicity in notation we omitted the superimposed asterix..  

Notice that the forcing term on the r.h.s. of eq. (1.33) expressed in terms of the 

sloping angle β  of the circular track takes the following form, 

 ( )2sin cos tanb vβ β ϕ= − +  (1.34) 

From this expression it becomes clear that the curved topography induces an 

additional resistance to flow due to the development of centripetal forces, which for a 

dry material result in an increase of the frictional (resisting) forces. These forces are 

proportional to 2v  and are important in rapid flow regimes. 

2 Steadily moving mud-flow down on a planar track 

For a planar track we have that, 

 , . , 1/ 0s x const rβ≡ = =  (2.1) 

In that case the governing equations become, 

 ( ) 0h hv
t x

∂ ∂
+ =

∂ ∂
 (2.2) 
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 ( )21 tan n

n

v vv Kg h g
t x h x

τ
β

σ
⎛ ⎞∂ ∂ ∂ ′ ′+ + = −⎜ ⎟∂ ∂ ∂ ⎝ ⎠

 (2.3) 

As an application of these equations we consider here a mudflow-slide, moving on a 

planar track (cf. Figure 2-1). 

 

Figure 2-1: An aerial view shows Saturday, Feb. 18, 2006, the extent of the landslide 
that buried the whole village of Guinsaugon, St. Bernard town in Southern Leyte 
province in central Philippines. Officials estimate those who perished in the landslide 
to be 1,800. [AP] 

In order to model the mud-flow we assume that the basal friction obeys a Bagnold [1] 

rheology. Accordingly for fast shear flows of muddy soils we assume that instead of 

eq. (1.25) the following friction law holds 

 tan , 3/ 2n
n n wf nτ σ ϕ ν γ′= + =�  (2.4) 

where nσ ′  denotes the basal Terzaghi-effective stress, 

 ,n whgσ ρ ρ ρ ρ′ ′ ′ ′= = −  (2.5) 

where wρ  is the density of water. With wν  we denote the kinematic viscosity of 

water. 

According to Bagnold for fast shear flows of clayey materials the coefficient f  has 

the following structure 

 7 / 40.26 B w s gf Dλ ρ ρ≈  (2.6) 
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The factor Bλ  depends on the porosity of the mixture, 

 1/3
min

1
1 1
1

B
n
n

λ =
−⎛ ⎞ −⎜ ⎟−⎝ ⎠

 (2.7) 

and gD  is here the mean particle size. 

Mudflows are considered to be shear-flows, thus in eq. (2.4) γ� is replaced here by the 

mean shear-rate (see Apendix III, Sect. 7), 

 2 v
h

γ ≈�  (2.8) 

The factor 2 in eq. (2.8) is because v  a mean flow velocity. With these assumptions 

the governing momentum eq. (2.3) becomes, 

 
( )2

3 / 2
3 / 2

1

tan tan 2 w

v vv Kg h
t x h x

f vg
g h h
νρβ ϕ

ρ ρ

∂ ∂ ∂ ′+ + =
∂ ∂ ∂

⎛ ⎞′ ⎛ ⎞′ ′⎜ ⎟− − ⎜ ⎟⎜ ⎟′ ⎝ ⎠⎝ ⎠

 (2.9) 

 

Figure 2-2: Steadily moving mudslide 
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In order to investigate further the above set of governing equations we consider the 

case of steadily moving mudslide with speed [8], 

 . 0v vv V const v v
t x
∂ ∂

= = ⇒ = + =
∂ ∂

�  (2.10) 

In that case we assume that the profile of the moving body is constant; i.e. with the aid 

of a steadily moving coordinate system, 

 , .x x Vt V const′ = − =  (2.11) 

We assume that 

 ( )h H x′=  (2.12) 

With this ansatz the mass balance equation (2.2) is satisfied identically, whereas the 

momentum balance equation (2.9) yields an equation for the moving flow-profile 

 2 st dn
dHK m
dx

µ µ′= − −
′

 (2.13) 

where m  is the slope inclination that plays the role of the driving force (gravity):  

 tanm β=  (2.14) 

stµ′  is the Terzaghi-effective static friction: 

 tanst
ρµ ϕ
ρ
′

′ =  (2.15) 

and dnµ  is the Bagnold-dynamic friction: 

 3 / 2 5 / 2
dn cV Hµ −=  (2.16) 

The constant c  in eq. (2.16) is 

 3 / 2 7 / 42 0.26 w gw w s
B

Df
c

g g
νν ρ ρ

λ
ρ ρ

= =
′ ′

 (2.17) 

This parameter has the dimensions  

 
1/ 2

3/ 2
2[ ] LT Lc LT

LT

−

−
= =  (2.18) 
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that cancel out the dimensions of remaining terms on the r.h.s. of eq. (2.16) 

 3 / 2 5 / 2 3/ 2 3/ 2 5 / 2 1 3/ 2[ ]V H L T L L T− − − − −= =  (2.19) 

Let the height of the mud-flow wave, at large distance from its front be denoted as, 

 lim ( )
x

H H x∞
′→−∞

′=  (2.20) 

We assume that at this distance the flow height reaches its maximum, 

 0
x

dH
dx ′→−∞

=
′

 (2.21) 

Then from eq. (2.13) we get an expression for the velocity of the considered mud-

flow wave: 

 
2 / 3

3 / 2 5 / 2 5 / 30 st
bm cV H V H
c

µ ∞ ∞
⎛ ⎞′= − − ⇒ = ⎜ ⎟
⎝ ⎠

 (2.22) 

where 

 stb m µ′= −  (2.23) 

Thus the Bagnold model predicts a higher than linear dependency of the velocity on 

the flow- height ( 5 / 3V H∞∼ ).  

For a realistic application we must adjust the values of the various parameters that 

enter the above formula in order to get realistic predictions for the mud-flow velocity. 

In view of eq. (2.22) in the term, 

 tan tanb ρβ ϕ
ρ
′

= −  (2.24) 

the density ratio is usually about 

 1
2

ρ
ρ
′
≈  (2.25) 
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Remark: 

We recall from the static slope stability analysis that in case of an infinite slope under 

the action of seepage the safe slope inclination is , 

 1tan tan tan
2

ρβ ϕ ϕ
ρ
′

< ≈  (2.26) 

which in practical terms is usually referred to as, 

 1
2

β ϕ<  (2.27) 

The implication of this estimate are evident. If we have a natural slope that after a 

heavy and protracted rainfall gets water-saturated (e.g. due to loss of its protecting 

cover-vegetation…) then this slope will become unstable if the ineq. (2.26) does not 

hold. In that case we may have the triggering of the herein considered mud-flow. 

 

If we assume for example that the slope has an mean inclination of 10β = D  and that 

the internal friction of the remolded clay is about 5ϕ ≈ D , then, 0.133b ≈  and 

3/ 20.5 secc m≈   With this input eq. (2.22) yields, 

 5 / 3
2 / 3

1, 0.4
sec

V H
m

λ λ∞≈ ⋅ ≈  (2.28) 

 

Figure 2-3: Calibration of the height-velocity eq. (2.22) for mud-flow on a gentle 
planar slope 
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As shown in Figure 2-3, the resulting speeds are of the order of a few meters per 

second. 

With the above notation the governing eq. (2.13) becomes 

 
5 / 2

1dH HB
dx H

−

∞

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟′ ⎜ ⎟⎝ ⎠⎝ ⎠
 (2.29) 

where 

 
2
bB
K

=  (2.30) 

With the change of variables 

 * *,x Hx h
H H∞ ∞

′
= − =  (2.31) 

eq. (2.29) becomes (Figure 2-2) 

 ( )5 / 21dh B h
dx

∗
∗−

∗
= − −  (2.32) 

or 

 5 / 2
0

1
1

h dyx
B y

∗

∗
−

= −
−∫  (2.33) 

 

Figure 2-4: Profile of the mud-flow wave in terms of dimensionless variables 
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We notice that 

 ( )5 / 2 5 15 / 2 10 25 / 2 15
5 / 2

1
1

y y y y y O y
y−

− = + + + + +
−

 (2.34) 

and with that we get from eq.(2.33) (Figure 2-4), 

 
7 / 2 6 17 / 2 11 27 / 21 2 1 2 1 2

7 6 17 11 27

: 0 1

x h h h h h
B

for h

∗ ∗ ∗ ∗ ∗ ∗

∗

⎛ ⎞≈ + + + + +⎜ ⎟
⎝ ⎠

≤ <

"
 (2.35) 

We observe that the Bagnold model predicts an infinite slope at the tip, since from eq. 

(2.35) we get (Figure 2-5 

 

( ) ( )

2 / 7

5 / 7

* 5 / 7

1 7
2 2

2 1 : 0
7

h Bx

dh B O x for x
dx Bx

∗ ∗

∗
− ∗

∗ ∗

⎛ ⎞≈ ⇒⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟≈ = → ∞ →⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.36) 

Such a profile will have severe impact on structures it may encounter on its way! 
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Figure 2-5: Photo of a debris flowexperiment, taken from R.M. Iverson, J.E. Costa, 
and R.G. LaHusen, 1992, Debris-Flow Flume at H.J. Andrews Experimental Forest, 
Oregon: U.S. Geological Survey Open-File Report 92-483. The flow-wave shows the 
formation of steep front and the development of roll-waves  
(http://vulcan.wr.usgs.gov/Projects/MassMovement/Publications/OFR92-483/OFR92-
483_inlined.html ) 
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3 The deposition bore  

 

Figure 3-1: Granular bore after Gray et al.[4] 

 

Figure 3-2: The moving shock, mass balance 
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As indicated in Figure 3-1, in order to capture discontinuous structures like an uphill 

moving deposition bore in debris flow we need to consider the possibility of a moving 

strong discontinuity. As is shown in Figure 3-2 the curvature of the track is neglected 

since all considerations are done in the tangential direction. At time t  the 

discontinuity is at a position, ( )s D t= . The discontinuity is moving with the speed, 

 D
dDc
dt

=  (3.1) 

Across this section the flow velocity, the flow-height, the flow-velocity and the 

discharge are discontinuous. Let the corresponding jumps be the difference between 

the right hand (dawn-stream) and left hand (up-stream) limits of the considered fields 

 [[ ]] , [[ ]] , [[ ]]h h h v v v q v h v h+ − + − + + − −= − = − = −  (3.2) 

In order to formulate the compatibility conditions for these jumps we consider first the 

expression for the change of mass of segment of the flow-slide between the normal 

sections at the positions x a=  and x c= , and unit width: 

 ( ) ( ) ( )( , ) ( , ) 0
c

s c s a
a

m h ds v c t h v a t h
t
ρ ρ ρ= =

∂
= + − =

∂∫�  (3.3) 

We apply this result on both sides of a moving discontinuity section: 

 

( )

( )

( , ) ( , ) 0

( , ) ( , ) 0

D t

D
a

a

D
D t

hm ds c h v a t h a t
t

hm ds v a t h a t c h
t

−

+

− − − −

+ + + +

∂
= + − =

∂

∂
= + − =

∂

∫

∫

�

�

 (3.4) 

Thus the total mass rate is 

 ( , ) ( , ) ( , ) ( , ) 0
a

D D
a

hm m m ds c h v a t h a t v a t h a t c h
t

+

−

− + − − − + + +∂
= + = + − + − =

∂∫� � �

 (3.5) 
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We consider the limit of the above expression as, ( )a D t− → , ( )a D t+ → . For this 

limit the integrals in the above expression vanish and the remaining terms yield the 1st 

Rankine-Hugoniot compatibility condition for the moving discontinuity section, 

 ( )0D D Dc h v h v h c h c h h v h v h− − − + + + + − + + − −− + − = ⇒ − = −  (3.6) 

or  

 [[ ]]
[[ ]]D

qc
h

=  (3.7) 

Secondly we consider the total force and momentum in longitudinal direction of a 

segment of the flow-slide between the normal sections at the positions x a=  and 

x c= : 

 2 21 1( , ) ( , )
2 2

c

a
F K g h a t K g h c t dsρ ρ τ′ ′= − + ∫  (3.8) 

 
c

a
hvdsρΙ = ∫  (3.9) 

The rate of longitudinal momentum is, 

 ( ) ( )( ) ( , ) ( , )
c

s c s a
a

hv ds v c t hv v a t hv
t

ρ ρ ρ= =
∂

Ι = + −
∂∫�  (3.10) 

Balance of momentum requires that  

 0L F= − Ι =�  (3.11) 

where (Figure 3-2) 

 2 21 1( , ) ( , )
2 2

a

a

F Kg h a t K g h a t dxρ τ
+

−

− +′ ′= − + ∫  (3.12) 

and 

 I I I− += +� � �  (3.13) 
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Thus from 

( ) ( ) ( ) ( )( ) ( , ) ( , )
a

D Ds D s a s a s a
a

hv ds c hv v a t hv v a t hv c hv
t

ρ ρ ρ ρ ρ
+

− − + +

−

− +
= = = =

∂
Ι = + − + −

∂∫�

 (3.14) 

for the considered limits we get, 

 
( ) ( ) ( ) ( )

2 21 1( ) ( )
2 2

D D

F K g h K g h

c hv v hv v hv c hv

ρ ρ

ρ ρ ρ ρ

− − + +

− − + +− +

′ ′= −

Ι = − + −�
 (3.15) 

From eqs. (3.13) and (3.15) we get the 2nd Rankine-Hugoniot compatibility condition 

for the moving discontinuity  

 
( ) ( ) ( ) ( )

2 21 1( ) ( )
2 2

D D

K g h K g h

c hv v hv v hv c hv

− − + +

− − + +− +

′ ′− =

− + −
 (3.16) 

or 

 21[[ ]] [[ ]] [[ ]]
2Dqv c q Kg h′− =  (3.17) 

Due to the 1st R.-H. condition, eq. (3.7), from eq. (3.17) we get, 

 
2

2[[ ]] 1[[ ]] [[ ]]
[[ ]] 2
qqv Kg h
h

′− =  (3.18) 

We remark that the existence or not of base friction terms does not affect the 2nd 

Rankine-Hugoniot compatibility conditions. 

Based on the above compatibility conditions we may return to the consideration of an 

uphill moving deposition bore. We assume that the velocity of the material behind the 

deposition bore is zero, 

 0v+ =  (3.19) 

Thus from eqs. (3.6) and (3.16) we get 
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 ( )Dc h h v h+ − − −− = −  (3.20) 

 ( ) ( )2 21 1( ) ( )
2 2 DK g h K g h c hv v hv− −− − + + −′ ′− = −  (3.21) 

The solution of these conditions is  

 
( )

2 2

2
D

h K h K hc g
h h h

− + + − −

+ + −
−′= −
−

 (3.22) 

The minus sign in eq. (3.22) means that the bore is moving up-hill. 

The deposition bore is observed at slope inclinations where uniform flow is possible. 

For the simple of Coulomb type friction law this is the case when  

 β ϕ=  (3.23) 

Accordingly we assume that (see Sect. 6) 

 
2

2
1 sin

cos
K K ϕ

ϕ
+ − +
= =  (3.24) 

and  with that from eq. (3.22) we get (Gray et al. [4]) 

 Dc ghλ= −  (3.25) 

where 

 ( )1
2

h h h+ −= +  (3.26) 

and  

 
2

2
1 sincos

cos
h
h

ϕλ ϕ
ϕ

−

+
+

=  (3.27) 
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4 Roll waves 

 

Figure 4-1Roll-waves after Dressler [2] 

Roll-waves are observed in open-channel hydraulics and are stair-like structures that 

move down-stream (Figure 4-1). Roll-waves are a possibility in debris flows as well 

as is clearly seen in Figure 2-5. Similar structures are reported by Forterre & 

Pouliquen [3] in granular flows. 

Dressler [2] has shown that in open channel hydraulics these roll waves cannot be 

described with patching of piece-wise continuous “Bresse profiles”. He showed also 

that the dynamic stability of these roll waves is explained from the fact that the front 

( )D t  is a shock wave which moves with a constant celerity Dc . Ahead of the shock 

the flow is super-critical, whereas behind the shock it is sub-critical. It can be shown 

that in this case the particles move through the shock front, from the region of small 

flow-height to the region of big height. 
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5 Appendix I: The material time derivative 

In the frame of the Eulerian description of the motion all quantities are seen as 

functions of the spatial co-ordinates of the material points at current time and of the 

time variable. For example in an 1D setting, the velocity of a particle P  which at time 

t  occupies the position x  is given as a function of x  and t , 

 ( , )Ev v x t=  (4.1) 

Where the superscript E is redundant and is put in order to remind that the description 

of the motion is an Eulerian one (cf. R.J. Roberts [6]). 

 

Figure 5-1: The Eulerian description of the velocity field in time-space and the 

computation of the “material” time derivative of the velocity. 

At a following time instant, t t t′ = + ∆ , the considered particle P  has moved to a 

neighboring position, say, x x u′ = + ∆ , the incremental displacement of the particle is 

given by the particle’s velocity at the “event” ( , )x t  and the elapsed time interval: 

 ( , )Eu v x t t∆ ≈ ∆  (4.2) 

With the velocity field given, eq.(4.1), the velocity of the considered particle P  at this 

new position is, 

 ( , ) ( , )E Ev v x t v x x t t′ ′ ′= = + ∆ + ∆  (4.3) 
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If we want to compute the acceleration ( , )Ea a x t=  of the particle we have to 

compare the velocity ( , )Ev v x t=  of the particle at its original position to its velocity 

at its new position, ( , )Ev v x t′′ ′ ′= , 

 v va
t

′′ −
≈

∆
 (4.4) 

or according Figure 5-1, 

 ( ) ( )( )1a v v v v
t

′ ′′ ′≈ − + −
∆

 (4.5) 

The first term in the parenthesis on the r.h.s. of eq. (4.5) is computed as follows: 

 ( , ) ( , )
E

E E vv v v x x t v x t x
x

∂′ − = + ∆ − ≈ ∆
∂

 (4.6) 

and the second term as 

 
( , ) ( , )

( , ) ( , )

E E

E
E E

v v v x x t t v x x t
vv x t t v x t t
t

′′ ′− = + ∆ + ∆ − + ∆

∂
≈ + ∆ − ≈ ∆

∂

 (4.7) 

Thus 

 
E E

Ev va v
t x

∂ ∂
= +

∂ ∂
 (4.8) 

In fluid mechanics the above expression for the particle acceleration in an Eulerian 

description of the motion is called the “material” time derivative of the velocity field, 

because it accounts for the changes in the velocity as it is experienced by an observer 

who moves together with the particle (along the life-line of the particle). The material 

time derivative is denoted usually with a superimposed dot: 

 
E E

Ev vv v
t x

∂ ∂
= +

∂ ∂
�  (4.9) 

The material time derivative consists of the local term, ( / )v t∂ ∂ , and of the  

convective term, ( / )v v x∂ ∂ . The convective term is non-linear, since it consists of the 

product of the velocity and its spatial derivative. In solid mechanics applications the 
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convective term is usually negligible. In fluid mechanics and granular flow mechanics 

applications however convective terms are essential and cannot be neglected. 
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6 Appendix II: The limit equilibrium solutions for an infinite incline  

 

Figure 6-1: The infinite incline at limit equilibrium 

We consider the case of an infinitely extending incline with the dip angle β  of 

granular material at rest. The coordinate system ( ,x z ), is chosen with axes parallel 

and normal to the free surface of the incline (Figure 6-1). We assume that all stress 

components are independent of the slope-parallel coordinate. In this case the local 

equilibrium equations become, 

 
sin 0 sin ( )

cos 0 cos

zx
zx

zz
zz

g z z
z

g z z
z

σ
ρ β σ ρ β

σ ρ β σ ρ β

∂
+ = ⇒ = −

∂
∂

− = ⇒ =
∂

 (5.1) 

From the above expression it follows that along planes which are parallel to the free 

surface the stress ratio is constant, 
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 tanzx

zz

σ
β

σ
=  (5.2) 

If we assume that the granular material is at limit equilibrium, then from the 

corresponding Mohr-circles of stresses we obtain two distinct solutions, the so-called 

“active” and “passive” case. The geometric construction of these solutions follows 

from the observation that the traction ( , )zz zxσ σ  acting on a plane .z const=  is 

mapped on the point A. Its mirror image A′  and the related poles aΠ  και pΠ  lie on 

the same straight line.  

 

Figure 6-2: Stresses on a slice 

From this geometric construction we get the following expressions for the vertical and 

the lateral stress, acting on the base of a slice, whose normal height is h  (Taylor [10]), 

 
2 2

,min
2 2,max

cos cos cos
,

cos cos cos

v gh

gh
gh

σ ρ

σ β β ϕρ
ρ σ β β ϕ

=

− −
= = Λ Λ =

+ −

A

A

 (5.3) 

From this equation we can compute the lateral “earth-pressure” coefficient: 

 

1
2 2

2
/ 2 2 2

cos cos cos1tan
cos cos cos cos

xx
p a

zz
K β β ϕσ

β
σ β β β ϕ

±
⎛ ⎞− −< > ⎜ ⎟= = +
⎜ ⎟< > + −⎝ ⎠

 (5.4) 

or  
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2

/ 2 2
cos 12 1 1 1 , 0
cos cos

p aK φ β φ
β φ

⎛ ⎞
⎜ ⎟= ± − − ≤ ≤
⎜ ⎟
⎝ ⎠

 (5.5) 

We emphasize that these earth-pressure formulae do not have meaning for a dip angle 

larger than the friction angle, and should not be applied to flowing granular sheets, 

where indeed β φ>  holds. 

In particular for a slope angle differing but little from the friction angle, 

 , 0 1β φ δ δ= − ≤ <<  (5.6) 

we get 

 ( )
2

1/ 2
/ 2

1 sin
cos

p aK Oϕ δ
ϕ

+
= ±  (5.7) 

For almost horizontal slopes  

 , 0 1β δ δ= < <<  (5.8) 

we get the well-known expressions from Soil Mechanics 

 ( ) ( )2 2
/

1 sin tan 45 / 2
1 sinp aK Oφ δ φ

φ
±

= ± ≈ ±D
∓

 (5.9) 
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7 Appendix III: Shear flow of Bagnold frictional fluid 

 

Figure 7-1: Shear layer forming on an inclined track 

In order to get the flow-profile for a Bagnold-type frictional fluid we consider in a 

dynamic setting the governing equation (Figure 7-1), 

 sin xv
g

z t
τ ρ β ρ

∂∂ ′+ =
∂ ∂

 (6.1) 

From eqs. (2.4) and (6.1) we get  

 
1/ 2 2

3 / 2
2

3 12
2

v v vc b
z g tz

− ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟ ′∂ ∂⎝ ⎠ ∂
 (6.2) 

where the parameter c  is given by eq. (2.17) and b is defined in eq. (2.23). The 

steady-state problem is described by the following o.d.e., 

 
1/ 2 2

3 / 2
2

22 0
3

c v v
b z z

− ∂ ∂⎛ ⎞ + =⎜ ⎟∂⎝ ⎠ ∂
 (6.3) 

We introduce the following dimensionless variables (Figure 7-1), 

 ,
2

z vz v
H V

∗ ∗

∞
= =  (6.4) 

and with that eq. (6.3) becomes 

 
1/ 23 / 2 2

2
1 2 0

3
c V v v
b H H z z

∗ ∗

∗ ∗∞ ∞

⎛ ⎞⎛ ⎞ ∂ ∂
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (6.5) 

We observe that in view of (2.22),  
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3 / 2

1 1V c
H H b∞ ∞

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 (6.6) 

Thus eq. becomes, 

 
1/ 2 2

2
2 0
3

v v
z z

∗ ∗

∗ ∗

⎛ ⎞∂ ∂
+ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (6.7) 

The general solution of eq. (6.7) is, 

 ( )5 / 3
1 2

3
5

v c z c∗ ∗= − − +  (6.8) 

First we impose the boundary condition at the bottom of the shear layer 

 1: 0for z v∗ ∗= − =  (6.9) 

thus resulting to the following equation  

 ( )5 / 3
2 1

3 1
5

c c= +  (6.10) 

and with that 

 ( ) ( )5 / 35 / 3
1 1

3 1
5

v c z c∗ ∗⎛ ⎞
= + − − +⎜ ⎟

⎝ ⎠
 (6.11) 

The boundary condition at the top of the shear layer is 

 0 : 1for z v∗ ∗= =  (6.12) 

thus yielding to the following equation 

 ( )5 / 3 5 / 3
1 1 1

51 0 0.5142
3

c c c+ − − = ⇒ =  (6.13) 

The corresponding velocity profile is depicted in Figure 7-2. One can see that it 

corresponds indeed to a shear-flow profile. 
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Figure 7-2: Velocity profile for a Bagnold fluid in steady shear 
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